Tetrahedron Letters No.15, pp. 18-22, 1960. Pergamon Press Ltd. Printed in Great Britain

GIBBERELLIN A. ... A NEW FUNGAL GIBBERELLIN

B.E. Cross, R.H.B. Galt and J.R. Hanson

Imperial Chemical Industries Limited, Akers Research Laboratories, Welwyn, Herts.

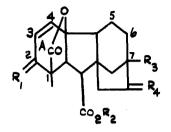
(Received 3 June 1960)

THE fungus <u>Gibberella fujikuroi</u> has been shown¹ to produce four gibberellins, namely, gibberellins A_1 , A_2 and A_4 and gibberellic acid, whilst gibberellins A_1 and A_5 have been isolated from the immature seed of <u>Phaseolus multiflorus.</u>¹ We wish to report the isolation of another gibberellin from <u>Gibberella fujikuroi</u>. The fungus was cultured² until the inorganic nitrogen was exhausted from the medium, then the pH was adjusted to and maintained at 7 for 209 hours. Isolation of crude gibberellic acid as previously described^{2,3} and recovery of the ethyl acetate mother liquors afforded a gum which was adsorbed on a column of charcoal-celite (1:2) and eluted with increasing concentrations of acetone in water. The fraction eluted with water containing 65% acetone gave a gum which was chromatographed on silicacelite (1:2) and eluted with increasing concentrations of ethyl acetate

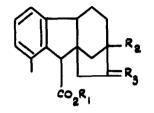
²Brit. Pat. 783611.

³P.J. Curtis and B.E. Cross, <u>Chem. and Ind</u>. 1066 (1954).

¹For review see P.W. Brian, J.F. Grove and J. MacMillan, "The Gibberellins", in Zechmeister, <u>Prog. Chem. Org. Nat. Prod.</u> 18, 350 (1960).

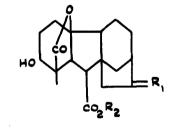

in chloroform. The fraction obtained with 20% ethyl acetate gave a new plant growth promoting acid (25 mg./l. of culture filtrate) for which we propose the name gibberellin A_7 .

Analysis of gibberellin A_7 (I), m.p. 202° dec., $[\alpha]_D^{24} + 20^{\circ}$ (EtOH), ν_{max} 3450 (OH), 1742, 1722 (C=O), 1654 cm.⁻¹ (C=C), ν_{mc} 1772 (γ -lactone), 1738 (CO₂H), 1657 cm.⁻¹ (C=C), and its methyl ester (II), m.p. 152-153° or 168-170°, $[\alpha]_D^{23} + 33°$ (EtOH), ν_{max} 3574, 1766, 1722, 1655, 886 (=CH₂), 780, 760 and 743 cm.⁻¹ ($^{H} \sim C = C \sim ^{H}$) indicates the molecular formula $C_{19}H_{22}O_5$ for (I). Microhydrogenation revealed the presence of two double bonds; with concentrated sulphuric acid (I) gave an intense red colour (cf. gibberellic acid⁴).


Treatment of (I) with dilute mineral acid at 20° gave an aromatic acid $C_{18}H_{22}O_3$ (VI), m.p. 220-222°, ν_{max} 3415, 2634, 1678 and 1587 cm.⁻¹, λ_{max}^{EtOH} 269,~272 mµ (* 418, 377), which with diazomethane gave an ester $C_{19}H_{24}O_3$ (VII), m.p. 145-148°. Under similar conditions gibberellic acid (III) gives allogibberic acid⁵ (VIII), suggesting that (I) has the same ring A structure as gibberellic acid, whilst the addition of water to the terminal methylene group is analogous to the

⁴B.E. Cross, J. Chem. Soc. 4670 (1954).

⁵P.W. Brian, J.F. Grove, H.G. Hemming, T.P.C. Mulholland and M. Radley, <u>Plant Physiol</u>. 329 (1958).



	R ₁	^R 2	^R 3	R ₄
I	н, он	H	н	CH2
11	н, он	Me	н	^{CH} 2
111	н, он	н	он	CH2
W	0	Me	H	^{CH} 2
v	H, OH	Me	Н	0

	R ₁	^R 2	^R 3
VI	н	н	OH, Me
VII	Me	н	OH, Me
VIII	н	он	^{сн} 2

IX $R_1 = CH_2$ $R_2 = H$ X $R_1 = OH$, Me $R_2 = H$. XI $R_1 = H$, Me $R_2 = Me$

conversion^{1,8} of gibberellin $A_4^{1,6}$ (IX) to gibberellin $A_2^{1,7}$ (X).

Hydrogenation of (II) over 25% palladised charcoal gave 60% of acidic products and dihydrogibberellin A_4 methyl ester⁷ (XI), m.p. 148-151°, identified by mixed m.p. and infrared spectrum. The Δ^{-3} position of the double bond, suggested by acid rearrangement, was confirmed by the high yield of hydrogenolysis acids (cf. gibberellic acid⁹) and by the oxidation of (II) with manganese dioxide to an $\alpha\beta$ -unsatured ketone $C_{20}H_{22}O_5$ (IV), m.p. 139-140°, λ_{max}^{EtOH} 228 mµ (ϵ 6900), $\nu_{max}^{CHCl_3}$ 1776 (γ -lactone), 1724 (ester) and 1691 cm.⁻¹ ($\alpha\beta$ -unsaturated ketone).

Oxidation of (I) with sodium periodate/potassium permanganate followed by spectrophotometric determination¹⁰ of the formaldehyde showed the presence of a terminal methylene group. Ozonolysis of (II) with 1 mole of ozone yielded formaldehyde (0.43 mol.) and a nor-ketone $C_{19}H_{22}O_6$ (V), m.p. 185°, ν_{max} 3440, 1784, 1755 (5-ring ketone), 1738 cm.⁻¹, which although it gave a monoacetate, m.p. 187-189°, was stable to periodate and therefore not an o-ketol.

On the basis of structure (IX) for gibberellin A_{μ} , the only

⁶N. Takahashi, Y. Seta, H. Kitamura and Y. Sumiki, <u>Bull. Agric.</u> <u>Chem. Soc. Japan</u>, <u>21</u>, 396 (1957).
⁷<u>Idem</u>, <u>ibid.</u> <u>23</u>, 405 (1959).
⁸J.F. Grove, personal communication.
⁹B.E. Cross, <u>J. Chem. Soc.</u> 1960, in the press.
¹⁰R.U. Lemieux and E. von Rudloff, <u>Canad. J. Chem.</u> <u>33</u>, 1710 (1955).

No.15

structure for gibberellin A_7 consistent with these results is (I), i.e. 7-deoxygibberellic acid.

All structures are supported by satisfactory analyses; infrared frequencies refer to 'Nujol' mulls unless otherwise stated.

We are indebted to Mr. E.G. Jefferys and his colleagues for carrying out the fermentations.